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Old Answer: Manual Calculus!

• By finding clever patterns in the derivatives, they can be derived 
and computed relatively easily.

• … for fully connected feed forward networks.
• As network architectures became bigger and more sophisticated, 

there was a growing need for automated systems for computing 
the necessary derivatives.

• This lecture provides an overview of these methods, called 
automatic differentiation methods.

• Before using these to differentiate loss functions w.r.t. model 
parameters, we describe how they can be used to take the 
derivative of an arbitrary function.
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Chain Rule (Review)

𝑑𝑑𝑑𝑑 𝑔𝑔 𝑥𝑥
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑑𝑑 𝑥𝑥

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑑𝑑

or

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
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Chain Rule

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 – How does changing 𝑥𝑥 change 𝑧𝑧?
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 – How does changing 𝑥𝑥 change 𝑦𝑦?
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 – How does changing y change 𝑧𝑧?

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=2 (adding 𝜖𝜖 to 𝑥𝑥 increases 𝑦𝑦 by 2𝜖𝜖)

2

=3 (adding 𝜖𝜖 to 𝑦𝑦 increases 𝑧𝑧 by 3𝜖𝜖)

3

=? (adding 𝜖𝜖 to 𝑥𝑥 increases 𝑧𝑧 by ? 𝜖𝜖)
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Chain Rule

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 – How does changing 𝑥𝑥 change 𝑧𝑧?
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 – How does changing 𝑥𝑥 change 𝑦𝑦?
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 – How does changing y change 𝑧𝑧?

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=2 (adding 𝜖𝜖 to 𝑥𝑥 increases 𝑦𝑦 by 2𝜖𝜖)

2

=3 (adding 𝜖𝜖 to 𝑦𝑦 increases 𝑧𝑧 by 3𝜖𝜖)

3

=6 (adding 𝜖𝜖 to 𝑥𝑥 increases 𝑧𝑧 by 6𝜖𝜖)

6

6



Chain Rule

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦′

𝑑𝑑𝑦𝑦′

𝑑𝑑𝑑𝑑

𝑦𝑦𝑦

2
3

?

1 5
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Chain Rule

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦′

𝑑𝑑𝑦𝑦′

𝑑𝑑𝑑𝑑

𝑦𝑦𝑦

2
3

𝟐𝟐 × 𝟑𝟑 + 𝟏𝟏 × 𝟓𝟓 = 𝟏𝟏𝟏𝟏
1 5
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Expression Trees

• Math expressions like function definitions can be converted into 
expression trees.

• Each internal node is a math operator.
• Each leaf node is a constant or variable.

• Example: 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥

𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)
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𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥
• Each math operator (internal node) 

can be viewed as a function.
• We can view this expression as the 

composition of many functions:
• 𝑓𝑓1 𝑥𝑥 = 𝑥𝑥2

• 𝑓𝑓2 𝑥𝑥,𝑦𝑦 = 𝑥𝑥𝑥𝑥
• 𝑓𝑓3 𝑥𝑥,𝑦𝑦 = 𝑥𝑥 + 𝑦𝑦
• 𝑓𝑓 𝑥𝑥 = 𝑓𝑓3 𝑓𝑓2 3,𝑓𝑓1 𝑥𝑥 , 𝑓𝑓2 2, 𝑥𝑥

• We can apply the chain rule to 
break the derivative, 𝑑𝑑𝑑𝑑 𝑥𝑥

𝑑𝑑𝑑𝑑
, into 

many smaller problems! 𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)
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We write 𝑥𝑥𝑥 and 𝑥𝑥𝑥𝑥 so that we can talk about the two paths, 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑥𝑥′

 and 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑥𝑥′′

 

Automatic Differentiation

• Goal: Compute 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

, for some value of 
𝑥𝑥

• Example: 𝑥𝑥 = 5
• Step 1: Run a “forwards pass”

• Evaluate the expression tree, computing 
values from the bottom to the top.

• Step 2: Run a “backwards pass”
• Loop over nodes from the top to the 

bottom.
• For each node, compute the derivative of 
𝑓𝑓(𝑥𝑥) with respect to each input of the node.

𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)

5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑑𝑑

𝑥𝑥𝑥
𝑥𝑥′′
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Backwards Pass: Multiplication Node

• We want to compute 𝜕𝜕𝜕𝜕(𝑥𝑥)/𝜕𝜕in1 and 𝜕𝜕𝜕𝜕(𝑥𝑥)/𝜕𝜕in2
• Assume that we know:

• The value of the inputs: in1 and in2
• These were computed during the forwards pass

• The derivative of 𝑓𝑓(𝑥𝑥) with respect to (w.r.t.) the output out 
of the multiplication function, ×.

• This is 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

• This was computed earlier in the backwards pass by the node 
“above” the multiplication node.

×

in1 in2

𝑓𝑓(𝑥𝑥)

𝑥𝑥

out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out
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Backwards Pass: Multiplication Node

• We want to compute 𝜕𝜕𝜕𝜕(𝑥𝑥)/𝜕𝜕in1 and 𝜕𝜕𝜕𝜕(𝑥𝑥)/𝜕𝜕in2
• Assume that we know:

• The value of the inputs: in1 and in2
• These were computed during the forwards pass

• The derivative of 𝑓𝑓(𝑥𝑥) with respect to (w.r.t.) the output out 
of the multiplication function, ×.

• This is 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

• This was computed earlier in the backwards pass by the node 
“above” the multiplication node.

• 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑in1

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in1

= ?

×

in1 in2

𝑓𝑓(𝑥𝑥)

𝑥𝑥

out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out
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Backwards Pass: Multiplication Node

• We want to compute 𝜕𝜕𝜕𝜕(𝑥𝑥)/𝜕𝜕in1 and 𝜕𝜕𝜕𝜕(𝑥𝑥)/𝜕𝜕in2
• Assume that we know:

• The value of the inputs: in1 and in2
• These were computed during the forwards pass

• The derivative of 𝑓𝑓(𝑥𝑥) with respect to (w.r.t.) the output out 
of the multiplication function, ×.

• This is 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

• This was computed earlier in the backwards pass by the node 
“above” the multiplication node.

• 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑in1

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in1

=

• 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑in2

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in2

= ?

×

in1 in2

𝑓𝑓(𝑥𝑥)

𝑥𝑥

out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

in2

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out in2
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Backwards Pass: Multiplication Node

• We want to compute 𝜕𝜕𝜕𝜕(𝑥𝑥)/𝜕𝜕in1 and 𝜕𝜕𝜕𝜕(𝑥𝑥)/𝜕𝜕in2
• Assume that we know:

• The value of the inputs: in1 and in2
• These were computed during the forwards pass

• The derivative of 𝑓𝑓(𝑥𝑥) with respect to (w.r.t.) the output out 
of the multiplication function, ×.

• This is 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

• This was computed earlier in the backwards pass by the node 
“above” the multiplication node.

• 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑in1

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in1

=

• 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑in2

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in2

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

in1

×

in1 in2

𝑓𝑓(𝑥𝑥)

𝑥𝑥

out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

in2

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out in2

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

in1

15



Backwards Pass

• For each math operator (+,−,×, 𝑎𝑎
𝑏𝑏

,⋅2, …) used by a parametric 
model, derive the expression for the derivative of 𝑓𝑓(𝑥𝑥) with 
respect to each input of the operator, assuming:

• The values of all inputs to the operator are known
• They will be computed during the forwards pass.

• The derivative of 𝑓𝑓(𝑥𝑥) w.r.t. the output of the operator is known
• It will already have been computed in the backwards pass.

16



Backwards Pass: Addition Node

• We want to compute 𝜕𝜕𝜕𝜕(𝑥𝑥)/𝜕𝜕in1 and 𝜕𝜕𝜕𝜕(𝑥𝑥)/𝜕𝜕in2
• Assume that we know:

• The value of the inputs: in1 and in2
• These were computed during the forwards pass

• The derivative of 𝑓𝑓(𝑥𝑥) w.r.t. the output out of the addition 
function, +.

• This is 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

• This was computed earlier in the backwards pass by the node 
“above” the multiplication node.

• 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑in1

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in1

+

in1 in2

𝑓𝑓(𝑥𝑥)

𝑥𝑥

out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in1

= 1=
𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out
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Backwards Pass: Addition Node

• We want to compute 𝜕𝜕𝜕𝜕(𝑥𝑥)/𝜕𝜕in1 and 𝜕𝜕𝜕𝜕(𝑥𝑥)/𝜕𝜕in2
• Assume that we know:

• The value of the inputs: in1 and in2
• These were computed during the forwards pass

• The derivative of 𝑓𝑓(𝑥𝑥) w.r.t. the output out of the addition 
function, +.

• This is 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

• This was computed earlier in the backwards pass by the node 
“above” the multiplication node.

• 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑in1

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in1

• 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑in2

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in2

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

+

in1 in2

𝑓𝑓(𝑥𝑥)

𝑥𝑥

out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in1

= 1=
𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out
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Backwards Pass: Exponent Node

• We want to compute 𝜕𝜕𝜕𝜕(𝑥𝑥)/𝜕𝜕in.
• Assume 𝑧𝑧 is a constant.
• Assume that we know:

• The value of the input in from the forwards pass
•  The derivative of 𝑓𝑓(𝑥𝑥) w.r.t. the output out of the 

exponentiation function, ⋅ 𝑧𝑧.
• This is 𝑑𝑑𝑑𝑑 𝑥𝑥

𝑑𝑑out
, as was computed previously in the backwards pass

• 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑in

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in

⋅𝑧𝑧

in

𝑓𝑓(𝑥𝑥)

𝑥𝑥

out

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

z𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

in𝑧𝑧−1

=
𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

× 𝑧𝑧 × in𝑧𝑧−1 
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𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass

Compute d𝑓𝑓
d𝑥𝑥

 for 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑥𝑥𝑥
𝑥𝑥′′
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𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass
Backwards Pass

Compute d𝑓𝑓
d𝑥𝑥

 for 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑑𝑑

= ?

𝑥𝑥𝑥
𝑥𝑥′′
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𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass
Backwards Pass

Compute d𝑓𝑓
d𝑥𝑥

 for 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑑𝑑

= 1
𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑑𝑑

= ?

𝑥𝑥𝑥
𝑥𝑥′′
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𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass
Backwards Pass

Compute d𝑓𝑓
d𝑥𝑥

 for 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑑𝑑

= 1
𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑑𝑑

= 1

𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑑𝑑

= ?

𝑥𝑥𝑥
𝑥𝑥′′

23



𝑥𝑥

⋅2

×

23

+
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Automatic Differentiation
• Automatic differentiation tools take functions as input

• Typically these functions are implemented as code, e.g., python functions.
• They can then be used to take the derivative of the function with respect to 

the arguments (inputs).
• There are several methods for automatic differentiation, with different pros 

and cons.
• Forwards Mode Automatic Differentiation: Runs one forwards pass (no backwards 

pass!). Computes the derivative of the output w.r.t. a single scalar input.
• Reverse Mode Automatic Differentiation: The strategy we have described.

• Requires a forward and backwards pass.
• Can compute the derivative with respect to all inputs with one forwards+backwards pass.
•  This is most common for automatically differentiating ML models and loss functions.

• Others include symbolic differentiation (manipulating the mathematical expressions to 
calculate expressions for the derivative) and finite difference methods (beyond the 
scope of this course).
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The remainder of this presentation covers:
19 Automatic Differentiation for Functions.ipynb
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Python Autograd

• Autograd is a tool for differentiating functions defined by Python 
code.

• Autograd provides the function grad, which uses reverse mode 
automatic differentiation.

• Installation:

• Import:

30



Autograd

• Weight vectors are usually represented as ndarray objects from 
numpy.

• Autograd provides a wrapper for numpy that enables automatic 
differentiation with numpy objects.
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Autograd Basic Usage

• Define a function that you would like to differentiate:

• Call the grad function to get a new function that returns the 
gradient (derivative)

• Evaluate the f_prime function to get the derivative for a value of 𝑥𝑥
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Autograd (Multiple Inputs)
• The second argument of grad specifies the input to take the 

derivative with respect to (default = 0)
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Autograd (Multiple Inputs)
• The second argument or grad specifies the input to take the 

derivative with respect to (default = 0)
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Autograd (Multiple Inputs)
• The second argument or grad specifies the input to take the 

derivative with respect to (default = 0)
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Autograd (Multiple Inputs)
• The second argument or grad specifies the input to take the 

derivative with respect to (default = 0)
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Autograd (Vector Inputs)

• Autograd can take the derivative with respect to a vector of inputs.
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End
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